Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation, description and storage of dendritic morphology data

Identifieur interne : 000283 ( Psycho/Analysis ); précédent : 000282; suivant : 000284

Generation, description and storage of dendritic morphology data

Auteurs : R. Ktter [États-Unis] ; Giorgio A. Ascoli [États-Unis] ; Jeffrey L. Krichmar [États-Unis] ; Slawomir J. Nasuto [États-Unis] ; Stephen L. Senft [États-Unis]

Source :

RBID : ISTEX:A2C27194963F5B4A310E4A715B71A8455C4BD2F6

Abstract

It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structurefunction relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of threedimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Singlecell neuroanatomy can be characterized quantitatively at several levels. In computeraided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This Cartesian description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise blueprint of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of fundamental, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, LNEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the computational neuroanatomy strategy for neuroscience databases.

Url:
DOI: 10.1098/rstb.2001.0905


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:A2C27194963F5B4A310E4A715B71A8455C4BD2F6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generation, description and storage of dendritic morphology data</title>
<author>
<name sortKey="Ktter, R" sort="Ktter, R" uniqKey="Ktter R" first="R." last="Ktter">R. Ktter</name>
</author>
<author>
<name sortKey="Ascoli, Giorgio A" sort="Ascoli, Giorgio A" uniqKey="Ascoli G" first="Giorgio A." last="Ascoli">Giorgio A. Ascoli</name>
</author>
<author>
<name sortKey="Krichmar, Jeffrey L" sort="Krichmar, Jeffrey L" uniqKey="Krichmar J" first="Jeffrey L." last="Krichmar">Jeffrey L. Krichmar</name>
</author>
<author>
<name sortKey="Nasuto, Slawomir J" sort="Nasuto, Slawomir J" uniqKey="Nasuto S" first="Slawomir J." last="Nasuto">Slawomir J. Nasuto</name>
</author>
<author>
<name sortKey="Senft, Stephen L" sort="Senft, Stephen L" uniqKey="Senft S" first="Stephen L." last="Senft">Stephen L. Senft</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A2C27194963F5B4A310E4A715B71A8455C4BD2F6</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1098/rstb.2001.0905</idno>
<idno type="url">https://api.istex.fr/ark:/67375/V84-05VHP8CK-G/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A43</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A43</idno>
<idno type="wicri:Area/Istex/Curation">000A43</idno>
<idno type="wicri:Area/Istex/Checkpoint">002383</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002383</idno>
<idno type="wicri:doubleKey">0962-8436:2001:Ktter R:generation:description:and</idno>
<idno type="wicri:Area/Main/Merge">006978</idno>
<idno type="wicri:Area/Main/Curation">006464</idno>
<idno type="wicri:Area/Main/Exploration">006464</idno>
<idno type="wicri:Area/Psycho/Extraction">000283</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Generation, description and storage of dendritic morphology data</title>
<author>
<name sortKey="Ktter, R" sort="Ktter, R" uniqKey="Ktter R" first="R." last="Ktter">R. Ktter</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>1 Krasnow Institute for Advanced Study, George Mason University, MS2A1-4400 Univerity Drive, Fairfax VA 22030-4444</wicri:regionArea>
<wicri:noRegion>Fairfax VA 22030-4444</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>2 Department of Psychology, George Mason University, MS2A1-4400 University Drive, Fairfax, VA 22030-4444</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>3 The Neurosciences Institute, 10640 J. J. Hopkins Drive, San Diego, CA 92121</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ascoli, Giorgio A" sort="Ascoli, Giorgio A" uniqKey="Ascoli G" first="Giorgio A." last="Ascoli">Giorgio A. Ascoli</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Krasnow Institute for Advanced Study, George Mason University, MS2A1-4400 Univerity Drive, Fairfax VA 22030-4444</wicri:regionArea>
<wicri:noRegion>Fairfax VA 22030-4444</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychology, George Mason University, MS2A1-4400 University Drive, Fairfax, VA 22030-4444</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Krichmar, Jeffrey L" sort="Krichmar, Jeffrey L" uniqKey="Krichmar J" first="Jeffrey L." last="Krichmar">Jeffrey L. Krichmar</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Krasnow Institute for Advanced Study, George Mason University, MS2A1-4400 Univerity Drive, Fairfax VA 22030-4444</wicri:regionArea>
<wicri:noRegion>Fairfax VA 22030-4444</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Neurosciences Institute, 10640 J. J. Hopkins Drive, San Diego, CA 92121</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nasuto, Slawomir J" sort="Nasuto, Slawomir J" uniqKey="Nasuto S" first="Slawomir J." last="Nasuto">Slawomir J. Nasuto</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Krasnow Institute for Advanced Study, George Mason University, MS2A1-4400 Univerity Drive, Fairfax VA 22030-4444</wicri:regionArea>
<wicri:noRegion>Fairfax VA 22030-4444</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Senft, Stephen L" sort="Senft, Stephen L" uniqKey="Senft S" first="Stephen L." last="Senft">Stephen L. Senft</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Krasnow Institute for Advanced Study, George Mason University, MS2A1-4400 Univerity Drive, Fairfax VA 22030-4444</wicri:regionArea>
<wicri:noRegion>Fairfax VA 22030-4444</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Philosophical Transactions of the Royal Society B: Biological Sciences</title>
<title level="j" type="issue">Theme Issue ‘Neuroscience databases: tools for exploring brain structure–function relationships’ compiled by R. Kötter</title>
<idno type="ISSN">0962-8436</idno>
<imprint>
<publisher>The Royal Society</publisher>
<date type="published">2001</date>
<biblScope unit="vol">356</biblScope>
<biblScope unit="issue">1412</biblScope>
<biblScope unit="page" from="1131">1131</biblScope>
<biblScope unit="page" to="1145">1145</biblScope>
</imprint>
<idno type="ISSN">0962-8436</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-8436</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structurefunction relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of threedimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Singlecell neuroanatomy can be characterized quantitatively at several levels. In computeraided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This Cartesian description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise blueprint of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of fundamental, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, LNEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the computational neuroanatomy strategy for neuroscience databases.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Ktter, R" sort="Ktter, R" uniqKey="Ktter R" first="R." last="Ktter">R. Ktter</name>
</noRegion>
<name sortKey="Ascoli, Giorgio A" sort="Ascoli, Giorgio A" uniqKey="Ascoli G" first="Giorgio A." last="Ascoli">Giorgio A. Ascoli</name>
<name sortKey="Ascoli, Giorgio A" sort="Ascoli, Giorgio A" uniqKey="Ascoli G" first="Giorgio A." last="Ascoli">Giorgio A. Ascoli</name>
<name sortKey="Ascoli, Giorgio A" sort="Ascoli, Giorgio A" uniqKey="Ascoli G" first="Giorgio A." last="Ascoli">Giorgio A. Ascoli</name>
<name sortKey="Krichmar, Jeffrey L" sort="Krichmar, Jeffrey L" uniqKey="Krichmar J" first="Jeffrey L." last="Krichmar">Jeffrey L. Krichmar</name>
<name sortKey="Krichmar, Jeffrey L" sort="Krichmar, Jeffrey L" uniqKey="Krichmar J" first="Jeffrey L." last="Krichmar">Jeffrey L. Krichmar</name>
<name sortKey="Ktter, R" sort="Ktter, R" uniqKey="Ktter R" first="R." last="Ktter">R. Ktter</name>
<name sortKey="Ktter, R" sort="Ktter, R" uniqKey="Ktter R" first="R." last="Ktter">R. Ktter</name>
<name sortKey="Nasuto, Slawomir J" sort="Nasuto, Slawomir J" uniqKey="Nasuto S" first="Slawomir J." last="Nasuto">Slawomir J. Nasuto</name>
<name sortKey="Senft, Stephen L" sort="Senft, Stephen L" uniqKey="Senft S" first="Stephen L." last="Senft">Stephen L. Senft</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Psycho/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000283 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Psycho/Analysis/biblio.hfd -nk 000283 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Psycho
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:A2C27194963F5B4A310E4A715B71A8455C4BD2F6
   |texte=   Generation, description and storage of dendritic morphology data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021